Computed theoretical power for N=100 and N=200 scenarios
This commit is contained in:
78
Modules/ado/personal/g/geekel2d.hlp
Normal file
78
Modules/ado/personal/g/geekel2d.hlp
Normal file
@ -0,0 +1,78 @@
|
||||
{smcl}
|
||||
{* 2july2005}{...}
|
||||
{hline}
|
||||
help for {hi:geekel2d}{right:Jean-Benoit Hardouin}
|
||||
{hline}
|
||||
|
||||
{title:Estimation of the parameters of undimensional and bidimensional IRT models}
|
||||
|
||||
{p 8 14 12}{cmd:geekel2d} {it:varlist} [{cmd:,} {cmdab:coef}({it:matrixname}) {cmdab:nbit}({it:#}) {cmdab:critconv}({it:#}) {cmdab:ll} {cmdab:quad}({it:#}) {cmdab:novar}]
|
||||
|
||||
{p 8 14 12}{it:varlist} is a list of two existing dichotomous variables or more.
|
||||
|
||||
{title:Description}
|
||||
|
||||
{p 4 8 2}{cmd:geekel2d} estimates, by Generalized Estimating
|
||||
Equations (GEE), the parameters of the model defined by Kelderman (1994) with
|
||||
one or two dimensions and dichotomic items. This model includes the Rasch model
|
||||
and the One Parameter Logistic Model (OPLM) for the unidimensional models, the
|
||||
Multidimensional Generalized Rasch Model (MGRM) and the Multidimensional
|
||||
Completely Sufficient Rasch Model (MMSRM) for the two-dimensional models.
|
||||
|
||||
{title:Options}
|
||||
|
||||
{p 4 8 2}{cmd:coef} is the name of a matrix which contains the coeficients B. This
|
||||
matrix relies the items and the latent traits. Each row represents an item and
|
||||
there is as many colmuns than the supposed number of latent traits (one or two).
|
||||
The coefficients are choosen, in general, among the first intergers, but
|
||||
{cmd:geekel2d} allows using real coefficients. By default, the Rasch model is
|
||||
supposed (the matrix {cmd: coef} is a vector of 1).
|
||||
|
||||
{p 4 8 2}{cmd:nbit} defines the maximal number of iterations in the estimation
|
||||
algorithm. By default, this number is fixed to 30.
|
||||
|
||||
{p 4 8 2}{cmd:critconv} is the value of the convergence criterion, calculated
|
||||
as the square of the cross-product of the vector containing the difference
|
||||
between two successive iterations of the parameters estimations. By default,
|
||||
this criterion is fixed to 1e-15.
|
||||
|
||||
{p 4 8 2}{cmd:ll} estimates the marginal log-likelihood and the Akaike
|
||||
Information Criterion (AIC) by Gauss-Hermite quadratures.
|
||||
|
||||
{p 4 8 2}{cmd:quad} defines the number of nodes of quadratures.
|
||||
|
||||
{p 4 8 2}{cmd:novar} avoids to compute the standards errors of the estimators (faster).
|
||||
|
||||
{title:Remarks}
|
||||
|
||||
{p 4 8 2}For detailed informations on the Kelderman model, see Kelderman and
|
||||
Rijkes (1994) or Adams and al. (1997).
|
||||
|
||||
{p 4 8 2}{cmd:geekel2d} don't allows using of polytomous items.
|
||||
|
||||
{p 4 8 2}The {cmd:ghquadm} Stata module is needed (use {cmd:findit ghquadm} to obtain it).
|
||||
|
||||
|
||||
{title:Example}
|
||||
|
||||
{p 4 8 2}{cmd:. geekel2d item1 item2 item3 item4} /*Rasch model*/
|
||||
|
||||
{p 4 8 2}{cmd:. matrix B=(1,0\1,0\0,1\0,1)}
|
||||
|
||||
{p 4 8 2}{cmd:. geekel2d item1 item2 item3 item4 , coef(B) nbit(50) critconv(1e-30)}
|
||||
|
||||
|
||||
{title:References}
|
||||
|
||||
{p 4 8 2}Kelderman H. and Rijkes C. P. M., Loglinear multidimensional IRT models for polytomously scored items. {it:Psychometrika}, 1994, {it:59}, 149-176.
|
||||
|
||||
{p 4 8 2}Adams R. J., Wilson M. R. and Wang W., The multidimensional random coefficient multinomial logit model. {it:Applied Psychological Measurement}, 1997, {it:21}, 1-23.
|
||||
|
||||
{title:Author}
|
||||
|
||||
{p 4 8 2}Jean-Benoit Hardouin, Regional Health Observatory (ORS) - 1, rue Porte
|
||||
Madeleine - BP 2439 - 45032 Orleans Cedex 1 - France. You can contact the
|
||||
author at
|
||||
{browse "mailto:jean-benoit.hardouin@orscentre.org":jean-benoit.hardouin@orscentre.org}
|
||||
and visit the websites {browse "http://anaqol.free.fr":AnaQol}
|
||||
and {browse "http://freeirt.free.fr":FreeIRT}
|
Reference in New Issue
Block a user