Computed theoretical power for N=100 and N=200 scenarios
This commit is contained in:
320
Modules/ado/personal/m/mmsrm.ado
Normal file
320
Modules/ado/personal/m/mmsrm.ado
Normal file
@ -0,0 +1,320 @@
|
||||
*! Version 4 7December2012
|
||||
************************************************************************************************************
|
||||
* Stata program : mmsrm
|
||||
* Estimate the parameters of the Multidimensional Marginally Sufficient Rasch Model (MMSRM)
|
||||
* Version 4 : December 7, 2012 /* id option*/
|
||||
*
|
||||
* Historic :
|
||||
* Version 1 (May 14, 2004) [Jean-Benoit Hardouin]
|
||||
* Version 2 (May 26, 2004) [Jean-Benoit Hardouin]
|
||||
* Version 3 (July 3, 2005) [Jean-Benoit Hardouin]
|
||||
* Version 3.1 : July 8, 2010 /* correction of a bug for the name of the items */
|
||||
*
|
||||
* Jean-benoit Hardouin, phD, Assistant Professor
|
||||
* Team of Biostatistics, Pharmacoepidemiology and Subjective Measures in Health Sciences (UPRES EA 4275 SPHERE)
|
||||
* University of Nantes - Faculty of Pharmaceutical Sciences
|
||||
* France
|
||||
* jean-benoit.hardouin@anaqol.org
|
||||
*
|
||||
* Use the Stata programs raschtest and gammasym who can be download on http://anaqol.free.fr
|
||||
* Use the Stata program gllamm who can be obtained by : ssc install gllamm
|
||||
* News about this program :http://anaqol.free.fr
|
||||
*
|
||||
* Copyright 2004-2005, 2010, 2012 Jean-Benoit Hardouin
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*
|
||||
************************************************************************************************************
|
||||
|
||||
|
||||
program define mmsrm,eclass
|
||||
version 8.0
|
||||
syntax varlist(min=3 numeric) [if] [in] , id(varname) [PARTition(numlist) NODETails TRAce ITerate(int 30) ADapt METHod(string)]
|
||||
preserve
|
||||
tempfile mmsrmfile
|
||||
qui save `mmsrmfile',replace
|
||||
|
||||
/*******************************************************************************
|
||||
INTRODUCTION AND TESTS
|
||||
********************************************************************************/
|
||||
|
||||
marksample touse
|
||||
qui keep if `touse'
|
||||
|
||||
local nbitems : word count `varlist'
|
||||
if "`partition'"=="" {
|
||||
local partition=`nbitems'
|
||||
}
|
||||
if "`method'"=="" {
|
||||
local method mml
|
||||
}
|
||||
local method=lower("`method'")
|
||||
local nbpart:word count `partition'
|
||||
|
||||
if `nbpart'>3 {
|
||||
di in red "{p}The mmsrm module cannot estimate the parameters of the models with more than three dimensions.{p_end}"
|
||||
error 198
|
||||
exit
|
||||
}
|
||||
else if `nbpart'==3&"`method'"=="gee" {
|
||||
di in red "{p}You cannot estimate the parameters of a MMSRM with 3 dimension and the GEE method.{p_end}"
|
||||
error 198
|
||||
exit
|
||||
}
|
||||
|
||||
if "`adapt'"!=""&"`method'"!="mml" {
|
||||
di in green "{p}the {cmd:adapt} option is ignored with GEE.{p_end}"
|
||||
}
|
||||
|
||||
local comptitems=0
|
||||
tokenize `varlist'
|
||||
forvalues i=1/`nbpart' {
|
||||
local firstpart`i'=`comptitems'+1
|
||||
local part`i': word `i' of `partition'
|
||||
local set`i'
|
||||
local comptitems=`comptitems'+`part`i''
|
||||
forvalues j=`firstpart`i''/`comptitems' {
|
||||
local set`i' "`set`i'' ``j''"
|
||||
}
|
||||
}
|
||||
|
||||
if `comptitems'<`nbitems' {
|
||||
di in error "{p}Your {cmd:partition} describes less items than the number of items defined in the {it:varlist}.{p_end}"
|
||||
error 198
|
||||
exit
|
||||
}
|
||||
if `comptitems'>`nbitems' {
|
||||
di in error "{p}Your {cmd:partition} describes more items than the number of items defined in the {it:varlist}.{p_end}"
|
||||
error 198
|
||||
exit
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
FORMATING AND ESTIMATION (with MML)
|
||||
********************************************************************************/
|
||||
if `nbpart'== 1 {
|
||||
raschtestv7 `varlist', test(none) method(`method') id(`id')
|
||||
local ll=r(ll)
|
||||
tempname beta1 Varbeta1 M
|
||||
matrix `beta1'=r(beta)
|
||||
matrix `Varbeta1'=r(Varbeta)
|
||||
local sigma1=r(sigma)
|
||||
matrix `M'=(`sigma1'^2)
|
||||
}
|
||||
else if "`method'"=="mml" {
|
||||
forvalues i=1/`nbpart' {
|
||||
if "`details'"=="" {
|
||||
di in green "{p}Estimation of the difficulty parameters of the dimension `i'.{p_end}"
|
||||
}
|
||||
*set trace on
|
||||
if `part`i''>1 {
|
||||
qui raschtestv7 `set`i'',meth(`method') test(none) id(`id')
|
||||
tempname beta`i' Varbeta`i'
|
||||
matrix `beta`i''=r(beta)
|
||||
matrix `Varbeta`i''=r(Varbeta)
|
||||
local sigma`i'=r(sigma)
|
||||
forvalues j=1/`part`i'' {
|
||||
local parambeta`=`firstpart`i''+`j'-1'=`beta`i''[1,`j']
|
||||
}
|
||||
}
|
||||
else {
|
||||
qui count
|
||||
local N=r(N)
|
||||
qui count if ``firstpart`i'''==1
|
||||
local pos=r(N)
|
||||
local parambeta`firstpart`i''=-log(`pos'/(`N'-`pos'))
|
||||
local sigma`i'=0
|
||||
}
|
||||
}
|
||||
|
||||
if "`details'"=="" {
|
||||
di
|
||||
di in green "{p}Estimation of the parameters of the distribution of the multidimensional latent trait.{p_end}"
|
||||
di in green "{p}This process could be long to run. Be patient !{p_end}"
|
||||
}
|
||||
|
||||
keep `varlist'
|
||||
|
||||
tempname rep id item offset
|
||||
forvalues i=1/`nbitems' {
|
||||
rename ``i'' `rep'`i'
|
||||
}
|
||||
|
||||
gen `id'=_n
|
||||
qui reshape long `rep', i(`id') j(`item')
|
||||
|
||||
gen `offset'=0
|
||||
label variable `offset' "offset"
|
||||
|
||||
forvalues i=1/`nbitems' {
|
||||
qui replace `offset'=-`parambeta`i'' if `item'==`i'
|
||||
}
|
||||
|
||||
local eqs
|
||||
forvalues i=1/`nbpart' {
|
||||
tempname B`i'
|
||||
gen `B`i''=0
|
||||
eq sc`i':`B`i''
|
||||
local eqs `eqs' sc`i'
|
||||
forvalues j=`firstpart`i''/`=`firstpart`i''+`part`i''-1' {
|
||||
qui replace `B`i''=1 if `item'==`j'
|
||||
}
|
||||
}
|
||||
|
||||
label variable `rep' "response"
|
||||
label variable `id' "identifiant"
|
||||
|
||||
tempname first
|
||||
local four=substr("`id'",1,3)
|
||||
matrix define `first'=(0,`sigma1',0,`sigma2')
|
||||
matrix colnames `first'=`rep':_cons `four'1_1:`B1' `four'1_2:`B2' `four'1_2_1:_cons
|
||||
|
||||
if "`trace'"!="" {
|
||||
local quigllamm
|
||||
}
|
||||
else {
|
||||
local quigllamm qui
|
||||
}
|
||||
|
||||
`quigllamm' gllamm `rep', from(`first') link(logit) fam(bin) i(`id') offset(`offset') nrf(`nbpart') eqs(`eqs') nip(6) dots `trace' `adapt' iterate(`iterate')
|
||||
local ll=e(ll)
|
||||
tempname cosig varsig L M
|
||||
matrix `cosig'=e(b)
|
||||
matrix `varsig'=e(V)
|
||||
matrix `L'=e(chol)
|
||||
matrix `M'=`L'*`L''
|
||||
}
|
||||
/*******************************************************************************
|
||||
FORMATING AND ESTIMATION (with GEE)
|
||||
********************************************************************************/
|
||||
else if "`method'"=="gee" {
|
||||
tempname coef
|
||||
matrix `coef'=J(`nbitems',`nbpart',0)
|
||||
forvalues i=1/`nbpart' {
|
||||
forvalues j=`firstpart`i''/`=`firstpart`i''+`part`i''-1' {
|
||||
matrix `coef'[`j',`i']=1
|
||||
}
|
||||
}
|
||||
if "`trace'"!="" {
|
||||
local quigee
|
||||
}
|
||||
else {
|
||||
local quigee quietly
|
||||
}
|
||||
`quigee' geekel2d `varlist',coef(`coef') ll nbit(`iterate')
|
||||
local ll=r(ll)
|
||||
tempname cosig varsig M
|
||||
matrix `cosig'=r(b)
|
||||
matrix `M'=J(2,2,0)
|
||||
matrix `M'[1,1]=`cosig'[1,`=`nbitems'+1']
|
||||
matrix `M'[2,2]=`cosig'[1,`=`nbitems'+2']
|
||||
matrix `M'[1,2]=`cosig'[1,`=`nbitems'+3']
|
||||
matrix `M'[2,1]=`cosig'[1,`=`nbitems'+3']
|
||||
matrix `cosig'=`cosig'[1,1..`nbitems']
|
||||
matrix `varsig'=r(V)
|
||||
matrix `varsig'=`varsig'[1..`nbitems',1..`nbitems']
|
||||
forvalues i=1/`nbpart' {
|
||||
tempname beta`i' Varbeta`i'
|
||||
matrix `beta`i''=`cosig'[1,`firstpart`i''..`=`firstpart`i''+`part`i''-1']
|
||||
matrix `Varbeta`i''=`varsig'[`firstpart`i''..`=`firstpart`i''+`part`i''-1',`firstpart`i''..`=`firstpart`i''+`part`i''-1']
|
||||
if `part`i''==1 {
|
||||
local parambeta`firstpart`i''=`cosig'[1,`firstpart`i'']
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
DISPLAYING OF THE RESULTS
|
||||
********************************************************************************/
|
||||
|
||||
local AIC=-2*`ll'+2*(`nbitems'+`nbpart'*(`nbpart'+1)/2)
|
||||
|
||||
if `nbpart'>1 {
|
||||
forvalues i=1/`nbpart' {
|
||||
local var`i'=`M'[`i',`i']
|
||||
forvalues j=`=`i'+1'/`nbpart' {
|
||||
local cov`i'`j'=`M'[`i',`j']
|
||||
}
|
||||
}
|
||||
di
|
||||
di in green _col(4) "Log-likelihood:" in yellow %-12.4f `ll'
|
||||
di
|
||||
noi di in green _col(4) "Items" _col(16) "Parameters" _col(29) "std Err."
|
||||
di in green _col(4) "{hline 33}"
|
||||
forvalues p=1/`nbpart' {
|
||||
forvalues i=1/`part`p'' {
|
||||
local name:word `i' of `set`p''
|
||||
if `part`p''!=1 {
|
||||
noi di in yellow _col(4) "`name'" _col(18) %8.5f `beta`p''[1,`i'] _col(30) %6.5f sqrt(`Varbeta`p''[`i',`i'])
|
||||
}
|
||||
else {
|
||||
noi di in yellow _col(4) "`name'" _col(18) %8.5f `parambeta`firstpart`p''' _col(30) "."
|
||||
}
|
||||
}
|
||||
}
|
||||
di in green _col(4) "{hline 33}"
|
||||
|
||||
forvalues i=1/`nbpart' {
|
||||
noi di in yellow _col(4) "Var`i'" _col(18) %8.5f `var`i''
|
||||
}
|
||||
|
||||
forvalues i=1/`nbpart' {
|
||||
forvalues j=`=`i'+1'/`nbpart' {
|
||||
di in green _col(4) in yellow "cov`i'`j'" _col(18) %8.5f `cov`i'`j''
|
||||
}
|
||||
}
|
||||
di in green _col(4) "{hline 33}"
|
||||
}
|
||||
if "`trace'"==""&"`details'"=="" {
|
||||
di in green "{p}Add the -trace- option to obtain the standard errors of the elements of the covariance matrix of the latent traits.{p_end}"
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
OUTPUTS
|
||||
********************************************************************************/
|
||||
|
||||
ereturn clear
|
||||
ereturn scalar AIC=`AIC'
|
||||
ereturn scalar ll=`ll'
|
||||
ereturn scalar dimension=`nbpart'
|
||||
forvalues i=1/`nbpart' {
|
||||
ereturn scalar nbitems`i'=`part`i''
|
||||
ereturn local set`i' `set`i''
|
||||
if `part`i''>1 {
|
||||
matrix colnames `beta`i''=`set`i''
|
||||
matrix rownames `beta`i''=beta
|
||||
ereturn matrix beta`i'=`beta`i''
|
||||
matrix colnames `Varbeta`i''=`set`i''
|
||||
matrix rownames `Varbeta`i''=`set`i''
|
||||
ereturn matrix Varbeta`i' `Varbeta`i''
|
||||
}
|
||||
else {
|
||||
ereturn scalar beta`i'=`parambeta`firstpart`i'''
|
||||
}
|
||||
}
|
||||
|
||||
tempname matrixsigma
|
||||
matrix `matrixsigma'=`M'
|
||||
local list
|
||||
forvalues i=1/`nbpart' {
|
||||
local list `list' latenttrait`i'
|
||||
}
|
||||
matrix colnames `matrixsigma'=`list'
|
||||
matrix rownames `matrixsigma'=`list'
|
||||
ereturn matrix covar=`matrixsigma'
|
||||
|
||||
drop _all
|
||||
qui use `mmsrmfile'
|
||||
end
|
Reference in New Issue
Block a user