Computed theoretical power for N=100 and N=200 scenarios
This commit is contained in:
70
Modules/ado/personal/r/raschfit.hlp
Normal file
70
Modules/ado/personal/r/raschfit.hlp
Normal file
@ -0,0 +1,70 @@
|
||||
{smcl}
|
||||
{* 208December2005}{...}
|
||||
{hline}
|
||||
help for {hi:raschfit}{right:Jean-Benoit Hardouin}
|
||||
{hline}
|
||||
|
||||
{title:The Raschfit procedure}
|
||||
|
||||
{p 8 14 2}{cmd:raschfit} {it:varlist} {cmd:,} [{cmdab:ker:nel}({it:#}) {cmdab:nbsc:ales}({it:#}) {cmdab:items:order}({it:keyword}) {cmdab:nofast}]
|
||||
|
||||
{title:Description}
|
||||
|
||||
{p 4 8 2}{cmd:raschfit} realizes the Raschfit algorithm defined by Hardouin and
|
||||
Mesbah (2004). This method selects sub-scales of items which fit a
|
||||
Rasch model. The method begin with a kernel of items (two or more items)
|
||||
defined by the user. At each step, the method uses a new item and verifies if this
|
||||
new item is explained by the same latent trait than the already selected items.
|
||||
If not, the items is not selected. The former version of the Raschfit algorithm
|
||||
is based on the comparison of two model: A Rasch model and a Multidimensional
|
||||
Marginally Sufficient Rasch Model (MMSRM). These two models are compared by the
|
||||
Akaike Information Criterion (AIC). A faster version of the algorithm (Raschfit-Fast)
|
||||
compares the Rasch model and an adapted version of this model where the response
|
||||
to the "new" item is not explained by the latent trait. Raschfit-Fast is executed
|
||||
by default.
|
||||
|
||||
{title:Options}
|
||||
|
||||
{p 4 8 2}{cmd:kernel}({it:#}) defines the # first items of {it:varlist} as the kernel
|
||||
of the first sub-scale (by default with {cmd:itemsorder}({it:order}), this number is
|
||||
fixed to 2).
|
||||
|
||||
{p 4 8 2}{cmd:nbscales}({it:#}) defines the maximal number of sub-scales (by default,
|
||||
only one sub-scale is selected).
|
||||
|
||||
{p 4 8 2}{cmd:itemsorder}({it:keyword}) defines the order of the items. If you type
|
||||
{it:order}, the kernel is composed of the first items defined in {it:varlist},
|
||||
and the items are tested in the same order than in {it:varlist}.
|
||||
If you type {it:msp} or {it:mspinv}, a Mokken Scale Procedure is run under
|
||||
the items (the {it:msp} and {it:loevH} Stata programs are necessary) and the
|
||||
items are selected from the first order selected by this procedure to the last
|
||||
one (with {it:msp}), or in the inverse order (with {it:mspinv}). The method {it:msp}
|
||||
is generaly more robust, but is longer to run. By default, the program uses {it:msp}.
|
||||
|
||||
{p 4 8 2}{cmd:nofast} allows to execute the former version of the algorithm.
|
||||
|
||||
{title:Example}
|
||||
|
||||
{p 4 8 2}{cmd:. raschfit itemA* , itemsorder(order)}
|
||||
|
||||
{p 4 8 2}{cmd:. raschfit itemA1-itemA7 , itemsorder(msp) kernel(4) nofast}
|
||||
|
||||
{p 4 8 2}{cmd:. raschfit item* }
|
||||
|
||||
{title:References}
|
||||
|
||||
{p 4 8 2} Hardouin J.-B. and Mesbah M. {it:Clustering binary variables in subscales using an extended Rasch model and Akaike Information Criterion}, Communication in Statistics <20> Theory and methods}, {cmd:33}(6), pp. 1277-1294, 2004
|
||||
|
||||
{p 4 8 2} Hardouin J.-B. {it:Construction d'<27>chelles d'items unidimensionnelles en qualit<69> de vie (Item selection in unidimensional scale applied to the Quality of Life)}, PhD thesis of the University Ren<65> Descartes - Paris 5,
|
||||
France, 201 pp, 2005
|
||||
|
||||
{p 4 8 2} Hardouin J.-B. and Mesbah M. {it:Fast Clustering of Binary Variables in Subscales}, Unpublished document, 2005.
|
||||
|
||||
{title:Author}
|
||||
|
||||
{p 4 8 2} Jean-Benoit Hardouin, Regional Health Observatory (ORS) - 1, rue Porte
|
||||
Madeleine - BP 2439 - 45032 Orleans Cedex 1 - France. You can contact the
|
||||
author at
|
||||
{browse "mailto:jean-benoit.hardouin@orscentre.org":jean-benoit.hardouin@orscentre.org}
|
||||
and visit the websites {browse "http://anaqol.free.fr":AnaQol}
|
||||
and {browse "http://freeirt.free.fr":FreeIRT}
|
Reference in New Issue
Block a user